
ONLINE ALGORITHMS & APPLICATIONS

Prof. Navneet Goyal

Department of Computer Science & Information Systems

BITS, Pilani

TOPICS

 Online Algorithms

 Offline Algorithms

 Competitive Analysis

 Adversaries

 Applications

ONLINE ALGORITHMS

 In online computation a computer algorithm
must decide how to act on incoming items of
information without any knowledge of future
inputs

 How should the next call be routed?

 Which cache block to be removed when the
cache is full?

ONLINE ALGORITHMS

 An online algorithm is one that can process its
input piece-by-piece, without having the entire
input available from the start

 In contrast, an offline algorithm is given the
whole problem data from the beginning and is
required to output an answer which solves the
problem at hand

 For example, selection sort requires that the
entire list be given before it can sort it

ONLINE ALGORITHMS

 An algorithm is called “online” if it produces (partial) output
while still reading its input.

 Some algorithms must be online, because they produce a
stream of output for a stream of input; output is produced
while the input (which might even be infinite in length) is
being read.

 All scheduling algorithms are online algorithms
 When an OS is paging memory, or when a dispatcher is

dispatching ambulances around the city, it is often important
to be able to guarantee certain levels of performance.

 OS or dispatcher have no idea what happens next.
 Must decide strictly according to data available at the time of

the action taken

ONLINE ALGORITHMS

 Input is revealed to the algorithm incrementally

 Output is produced incrementally

 Some output must be produced before the
entire input is known to the algorithm

 How to make decisions with partial
information?

 Unknown information: the future.

APPLICATIONS

 Resource Allocation
 Scheduling

 Memory Management

 Routing

 Robot Motion Planning
 Exploring an unknown terrain

 Finding a destination

METHODS OF ANALYSIS

 Probabilistic Analysis
 Assume a distribution generating the input.

 Find an algorithm which minimizes the expected cost
of the algorithm.

 Pros: can incorporate information predicting the
future.

 Cons: can be difficult to determine probability
distributions accurately.

METHODS OF ANALYSIS

 Competitive Analysis (Worst Case)

 For any input, the cost of our online algorithm is
never worse than ‘c’ times the cost of the optimal
offline algorithm.

 Pros: can make very robust statements about
the performance of a strategy.

 Cons: results tend to be pessimistic.

ONLINE ALGORITHMS

 Finding a shortest path in a finite connected graph
when the graph is unknown and the algorithm
receives the node neighbors only when it "enters"
the node.

 Problem can not be solved optimally without a
simple exhaustive search.

 New performance measures have to be introduced,
such as competitive analysis, which compares the
performance of an online algorithm with that of a
hypothetical offline algorithm that knows the
entire input in advance.

EXAMPLE: SKI RENTAL*

 Suppose you decide to learn to ski
 After each trip, you will make an irrevocable decision

whether to stop skiing or continue learning
 You have no idea in advance what your decision will be
 Skiing is an equipment-intensive sport and before each

trip you have two options: rent the equipment at $x per
day or buy the equipment for a grand sum of $y such
that:

y=cx for some integer c>1.
 Before each trip to the mountains you have to decide

whether to rent or buy

* Example taken from ‘An Introduction to Competitive Analysis for Online Optimization’

Maurice Queyranne, University of British Columbia.

EXAMPLE: SKI RENTAL

 OBJECTIVE: to minimize cost

 Buying equipment even before taking one
lesson would be a terrible waste if you decide to
stop after the first trip

 On the other hand, if you take many trips then
at some point it would be cheaper to buy than
rent.

 At what point you should stop renting and buy?

EXAMPLE: SKI RENTAL

 There is some number t of ski trips that you will
take before stopping

 Suppose you are told t in advance

 Then it is easy to decide: rent or buy

 If tx<=y, then rent otherwise buy right at the start

 OFFLINE ski-rental problem

 Its solution is called the OPTIMAL SLOUTION and
the cost of optimal solution is called OPTIMAL COST

 Optimal cost is tx for t<=c and y for t>c,

EXAMPLE: SKI RENTAL

 In the online version of the problem, the rent or
buy decision must be made prior to each trip,
without knowledge of t

 Strategy: rent until c=y/x trips have occurred,
and then buy if a (c+1)st trip happens

 How well this strategy would do?

EXAMPLE: SKI RENTAL

 If t<=c, then it is optimal – minimum possible
amount is spent

 If t>c, then the cost is exactly twice the optimal
cost!

 The strategy can be optimal for some situations
and in the worst case it incurs a cost that is twice
the optimal cost

 This worst case ratio between the cost incurred by
the online strategy and the optimal cost is called
the ‘COMPETITIVE RATIO’

EXAMPLE: SKI RENTAL

 Is there a better strategy given the rules of the
game?

 A strategy is simply a value ‘k’: the number of
times to rent before buying

 Cost of strategy:

tx for t<=k

kx + y for t>k

 Clearly, there is no value of k that is guaranteed to
achieve optimal cost in all cases

EXAMPLE: SKI RENTAL

 Any k is non-optimal for the case t=k+1

 Optimal cost = tx = (k+1)x

 Online cost = kx +y

 kx+y = kx+cx >= (k+2)x > (k+1)x = tx

 This is typical of online problems

 Without future knowledge, there is no online
algorithm that is always optimal

EXAMPLE: SKI RENTAL

 It is not hard to see that no strategy can have a competitive
ratio that is less that 2

 The worst case ratio between the online cost and the optimal
cost is

kx+y/[min(tx,y)] OR
max(kx+y/tx, kx+y/y)

 If k=0, then for t=1, first ratio is y/x which by assumption is at
least 2

 If kx<=y, then the ratio is at least 2 when t=k (first ratio in the
max)

 If kx>y, then the ratio is at least 2 when t>k (second ratio in
the max)

EXAMPLE: SKI RENTAL

 Renting costs $20 a day

 Buying costs $300

EXAMPLE: SKI RENTAL

 Omniscient strategy (if you know in advance
you will ski x days:
 If x < 15, optimal policy is to rent.

 If x > 15, optimal policy is to buy the first day.

 If x = 15, both policies are the same.

 An Online strategy is described by a threshold z:
 Rent for up to z days, then buy, if still skiing.

EXAMPLE: SKI RENTAL

Offline Solution

 If Tamon knew today that he would be skiing for
d days (Instance Id), his problem is easy

 If 20d <= 300 then rent

Else buy

 Offline optimum cost

 OPT (Id) = min (20d, 300)

…BUT Tamon does not know d!!

EXAMPLE: SKI RENTAL

General Online Ski Rental Algorithm Ax

 Rent for up to x days

 Then buy, if still skiing

How to evaluate the cost of an online algorithm?

EXAMPLE: SKI RENTAL

General Online Ski Rental Algorithm Ax

(Rent for x days, then buy)
 If Tamon ends up skiing d days, his actual cost is

C(Ax , Id) = 20d if d < x

20x + 300 otherwise

Whereas he could have only paid
OPT (Id) = min (20d, 300)

… but we don’t know which case will apply!

GENERALIZATION OF SKI RENTAL

PROBLEM

 Ski rental is relevant not only to the management of sports
equipment

 Applicable to wide variety of resource allocation problems

 For example: power management in a laptop computer

 Laptop powers down the hard drive when it isn’t in use, because
running a hard drive consumes battery power

 It takes significant amount of power and time, however, to
restart the hard drive

 If the user of the laptop doesn’t use the hard drive for a while,
how long the laptop should wait to powering it down?

 A typical online problem!!

